
MODAL ANALYSIS OF THE SLOTTED-CIRCULAR

COAXIAL CAVITIES USED IN SPACE-HARMONIC
MILLIMETER WAVE MAGNETRONS

J.-Y. Raguin and K. Schunemann

Technische Universitat Hamburg-Harburg

Arbeitsbereich Hochfrequenztechnik, D-2107 1 Hamburg, Germany

ABSTRACT

Computer-aided design of millimeter wave magne-

trons operating in a non-r mode calls for self-

consistent numerical simulation of the electron dy-

namics. For a modal analysis of the slotted-circular

coaxial cavities used in these magnetrons, complete

sets of eigenmodes, resonant as well as irrotational,

have to be computed. The Generalized Spectral Do-

main (GSD) method provides a fast and accurate

mean to calculate the eigenvalues of these modes

and to investigate their modal field distributions.

Results for a typical millimeter wave magnetron

cavity are presented.

eigenmodes account partly for the dynamic and static

space charge effects. Depending on the axial boun-

dary conditions chosen in their definitions (short- or

open-circuit condition), irrotational magnetic modes

account, also partly, for the coupling apertures.

The magnetron structure analysed in this contri-

bution is a lossless coaxial cavity of uniform cross-

section with slots cut in the anode block which are pe-

riodically spaced in azimuthal direction. A mean to cal-

culate the modal field distributions of such a composi-

te structure consists in applying the Generalized Spec-

tral Domain (GSD) method [2] to a section of the cavi-

ty. The three-dimensional eigenvalue problems for the

resonant and irrotational modes are then solved by con-

sidering the axial boundary conditions.

INTRODUCTION

THEORY
One of the technological difficulties met when desi-

gning compact and reliable classical magnetrons at fre-

quencies higher than 90 GHz are related to the high

magnetic field required to operate in the fundamental

T mode. A radical solution to this problem consists in

adopting one of the 7r/2 mode as the operating mode

[1]. Interaction of the electrons with the electromagne-

tic fields then occurs with the first backward space har-

monic of this mode. Although this new design feature

led to improvements with regard to output power, ade-

quate description of the electron dynamics in such type

of magnetron does not exist at present.

To simulate the interaction between the electrons

and the generated electromagnetic fields, accurate

computation of the modal field distributions of the ma-

gnetron structure is required. The modal analysis of the

cavity results from the projection of the electromagne-

tic field on the complete set of eigenfunctions, reso-

nant as well as irrotational modes. Irrotational electric

The GSD method applied to a section of the azi-

muthally periodic circular coaxial cavity of length L

coupled to N sectors leads to the determination of the.
cutoff wavenumbers of the TE and TM eigenmodes

and of their associated field distributions. The method

is based on short-circuiting one coupling surface and

replacing the tangential electric field at its boundary

by two surface magnetic currents on both sides of the

short-circuit. Imposing that the two surface magnetic

currents, which are to be computed, are equal in ma-

gnitude but opposite in direction makes the tangential

electric field continuous across the boundary. The a-

zimuthal periodicity is taken into account by applying

the Floquet’s theorem. The GSD method needs then to

be applied only to one single coupling surface.

The projection of the electromagnetic field on the

eigenmodes of the coaxial and sector waveguides leads

to relations between the expansion coefficients and the
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unknown surface magnetic current in the form of inte-

gral equations. For the determination of the TE (resp.

TM) modes of the composite waveguide, these equa-

tions involve the axial (resp. azimuthal) component of

the surface current. Expanding the axial component of

the surface current on the sets of functions:

cos(~$$)

~~’
k = 0,2,4...,

and:
sin ( ~~)

{p’

k = 1,3,5...,

and the azimuthal component on the sets:

cos(~())

{-’
k = 1,3,5...,

and:
sin ( !##)

/p’
k = 2,4,6...,

then, testing the continuity of the axial and azimuthal

magnetic field (Galerkin’s procedure) across the cou-

pling surface on the same sets results in the TE and TM

characteristic systems of equations, respectively, of the

type:

[Y~ + Y’]v = o.

In the above relation, V is a column voltage vector

the elements of which are the expansion coefficients of

the relevant components of the surface magnetic cur-

rent. [Y’] and [Ys] are admittance matrices associated

with the coaxial and the sector waveguides regions,

the terms of which are functions of the searched cut-

off wavenumbers kc of the composite waveguide. The

TM-matrix equation is determined by considering the

TE, TM and TEM eigenmodes of the coaxial wavegui-

de and the TE and TM eigenmodes of the sector waveg-

uide. Only the TE eigenmodes of the coaxial and sector

waveguides have to be taken into consideration to ob-

tain the TE-admittances matrices. Note that the basis

functions satisfy the edge condition for an edge angle

of 7r/2. This requirement makes the procedure numer-

ically very efficient [2].

The voltage eigenvectors V determines the poten-

tial functions ~~n (r, 8) and q%m(r, 0) of the compo-

site waveguide, with cutoff wavenumbers k~,n~ and

k:,nm , from which the field distributions of the TE and

TM eigenmodes are derived. For a given index n as-

sociated with phase shift per sector 2rn/N, kj,nm (i

corresponds to h or e) is the mth cutoff wavenumber

which singularizes the corresponding matrix equation.

The TE.~l and TM.~l eigenfrequencies of the

cavity are readily obtained by imposing axial boun-

dary conditions of the short- or open-circuit type. Re-

garding the irrotational eigenmodes [3], their their field

distributions are derived from the potential functions

@n~l(r, 6, z) = ~;~(r, o)~~(~) and vmn~(~, 6, Z) =

~~~ (r, d)g~(z). m~~~ and ~~nl are associated with the
irrotational electric Fnml and magnetic GnmI eigen-

functions, respectively. Functions ~1(z) and gl (z) are

the cos k,,lz or sin kz,zz’ functions, where kz,~ =

lr/L (1 being integer), depending on the imposed a-

xial boundary conditions. For each type of these (short-

circuit or open-circuit), the eigenvalues associated to

the respective irrotational electric eigenfunctions are

given by:

()P:ml = K,nm 2 + %1.

The eigenvalues for the two types of irrotational ma-

gnetic eigenfunctions are given by:

()k:nm 2(iLnl= , + k;,l.

RESULTS

The computer code which has been developed for the

computation of the resonant and irrotational modes has

been used to perform a complete modal analysis of a 94

GHz magnetron cavity. This cavity has N = 28 slots.

Each slot has an opening of 8.5°. The ratio of the slot

depth to the anode radius h/ra is 0.46. The ratio of the

cathode radius to the anode one is 0.54.

Fig. 1 shows the resonant frequencies of the TE~10

and TEn20 eigenmodes (n = O, 1, 2, .. .N/2) with axial

open-boundary conditions plotted in a dispersion dia-

gram representation. Points in the two passbands (de-

noted by the solid lines) corresponding to phase shifts

between O and T and between n and 27r are associated

with the fundamental and the first backward space har-

monic, respectively. Fig. 2 shows the electric field lines
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of the TETIO mode (7r/2 mode). Fig. 3 and Fig. 4 illus-

trate, for n = 6, the second-order degeneracy of the

modes n # O and n # N/2.

Fig. 5 shows the influence of the variation of the

slot depth on the frequencies of the first passband. De-

creasing the slot depth always leads to an increase of

these eigenfrequencies. The effect becomes more re-

markable when the mode number n is higher. The in-

fluence of the number of slots on the frequencies of

the TE.10 modes is depicted on Fig. 6 for n = N/4,
n = N/4 – 1 and n = N/4+1. It is seen that, keeping

the mode number n constant, an increase of the num-

ber of slots does not affect these eigenfrequencies very

significantly. On the other hand, the eigenfrequencies

of the 7r/2 mode always increase with the number of

slots.

As an example of computation of irrotational

eigenfunctions, in Fig. 7, the contour lines of the po-

tential function associated with one of the eigenmodes

F610 is presented. Note that these contour lines cor-

respond also to the magnetic field lines of one of the

TMG1Omode.

CONCLUSIONS

A method has been developed to perform a complete

modal analysis of millimeter wave magnetron struc-

tures. This method uses the GSD technique to find the

eigenfrequencies and eigenvalues of the resonant and

irrotational modes. Numerical results have been pre-

sented for a 94 GHz magnetron structure. The method

used in this contribution paves the way for the self-

consistent numerical simulations and the optimization

of modern high-power miniaturized magnetrons at fre-

quencies as high as 230 GHz.
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Fig. 1: Dispersion diagram associated with the TEn10

and TE.20 modes

Fig. 2: Electric field lines of the TE710 mode
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Fig. 3: Electric field lines of the TE610 mode (even

angularly dependence)

Fig. 4: Electric field lines of the TE610 mode (odd

angularly dependence)
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Fig. 6: Variation of the TE.10 frequencies with the

number of slots N; (o): n = iV/4 (7r/2 modes),

(+): n = f’v/4 -1, (x): n = N/4+1

Fig. 7: Contour lines of the potential that corre-

spond to the F610 mode (even angularly depen-

dence)

Fig. 5: Variation of the TEn10 frequencies with the

ratio h/r.; (o): h/r. = 0.46, (x): h/ra – 2Y0, (+):

h/ra +2%
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